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Integrated Modeling of Electric Vehicle Energy Demand 
and Regional Electricity Generation  

EXECUTIVE SUMMARY  

In order to reduce greenhouse gas emissions worldwide, a multitude of actions must be taken. 
Vehicle electrification is one of the primary mitigation methods widely recognized for the 
transportation sector. As a result, the relationship between vehicle electrification and 
renewable electrical energy deployment needs to be taken into consideration to ensure that 
increases in plug-in electric vehicle (PEV) penetration lead to minimized emissions from power 
generation. This report describes the development and application a model for developing 
highly resolved, time-of-day specific electric vehicle charging demand profiles from travel 
survey data for several alternative scenarios. The scenarios include alternative assumptions 
about EV adoption, charging preferences, and electric vehicle supply equipment (EVSE) 
availability.  The model is applied in the combined region of New England and New York (7 
states) using the data from the 2017 National Household Travel Survey (NHTS) assuming 
constant travel demand patterns and vehicle class by household.  

Since timing of vehicle charging is dependent on charging choices as well as EVSE availability, 
four EVSE scenarios are considered: 1) home only, 2) home and workplace only, 3) universal 
EVSE, and 4) a probabilistic scenario where EVSE availability varies by location type. To illustrate 
the implications of differing demand profiles on electricity generation with high renewable 
generating capacity added to the region’s existing infrastructure, a typical regional economic 
dispatch optimization model with dynamic wind and solar generation modeled across one year 
and adjusted in alignment with state-level renewable portfolio standard (RPS) targets is used to 
create 2030 generating portfolio. 

The model results provide a valuable approach for understanding the interactions between 
vehicle electrification and renewable electrical energy deployment while exploring a range of 
assumptions about EVSE availability and charging behaviors. Current generating capacity is 
shown to be more than adequate for 15% PEV penetration. However, all scenarios result in 
increased peak demand and increased generation by non-renewable generating sources. This 
indicates that incentive-based mechanisms that influence charging decisions are necessary to 
attain lower emissions outcomes.  

It is crucial that PEV charging demand profiles be based on real-world travel data. As PEV 
technology improves, travel behaviors will change in response. Future studies will require 
expanded data collection, over the traditional one-day travel survey, to capture more accurate 
depictions of driver behaviors. 
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Highlights 

• Travel survey data is used to create time-of-day and stop-based electric vehicle 
electricity demand 

• Regional wind and solar generation is modelled across one-year  

• Generating capacity is more than adequate for 15% plug-in electric vehicle penetration 
in New York and New England 

• Incentive mechanisms to alter charging behavior are needed 

• Implementation of widespread workplace charging facilities is recommended 
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1. Introduction 

Within the transportation sector, vehicle electrification is widely cited as a primary mitigation 
strategy for realizing the large magnitude of GHG reductions needed globe-wide (Audoly et al., 
2018; IPCC, 2014; McCollum et al., 2014; Morrison et al., 2015; Pleßmann and Blechinger, 
2017). Numerous studies have demonstrated significant GHG reductions from vehicle 
electrification and the magnitude of these GHG benefits increase as the GHG intensity of 
electricity generation falls (Moro and Lonza, 2018; Samaras and Meisterling, 2008). This paper 
contributes a time-specific modeling method using charging demand profiles that reflect the 
travel and charging behaviors of plug-in electric vehicle (PEV) owners to accurately evaluate 
and plan for the impact of vehicle charging on overall emissions. 

Our first research objective is to develop a PEV-charging demand model (PEV-CDM) that uses 
time-of-day specific charging demand from travel survey data that is consistent with real-world 
driving patterns and basic consumer vehicle preferences. Our approach builds on two key 
assumptions. First, that travel patterns are dependent on a spatial distribution of origins and 
destinations that changes relatively slowly, and therefore that near-future driving patterns will 
be broadly similar to current driving patterns. Second, that drivers are unlikely to significantly 
alter their travel patterns to accommodate technological differences between internal 
combustion engine vehicles (ICEVs) and PEVs; this means that the driving patterns of future PEV 
drivers can be approximated by examining current ICEV travel patterns when that travel is 
compatible with PEV electric ranges. Given these assumptions, travel survey data, such as that 
collected in the National Household Travel Survey (NHTS), can be converted to time-specific 
charging demand.  

Our second research objective is to evaluate the implications of charging demand on power 
plant-level generating decisions, wind and solar utilization, and net GHG changes. To 
accomplish this goal, the PEV-CDM demand profiles are used as an input for a regional 
economic dispatch model that minimizes the cost of the power generation, subject to technical 
and regulatory constraints. This dispatch model operates on a set of power-generating facilities 
that includes significantly expanded wind and solar generation compliant with state-level 2030 
Renewable Portfolio Standard (RPS) targets as of 2018. The combination of the PEV-CDM and 
the regional dispatch model demonstrates the impact of realistic PEV charging demand on wind 
and solar utilization, generating costs, and system-wide GHG emissions.  

A study region consisting of New York and New England (Connecticut, Maine, Massachusetts, 
New Hampshire, Rhode Island, and Vermont) is used for two PEV penetration levels (5% and 
15% of the vehicle fleet). Since the timing of vehicle charging is dependent on where charging 
infrastructure or electric vehicle supply equipment (EVSE) is available, four EVSE scenarios are 
considered: 1) home only, 2) home and workplace only, 3) a probabilistic scenario in which the 
likelihood of EVSE availability varies by location/stop type, and 4) universal EVSE availability. 
These combined EVSE/penetration scenarios result in eight charging profiles with differing total 
energy demand and temporal demand distributions. The model provides insight into the time-
specific charging demand in New York and New England, as well as how charging demand 
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timing is impacted by away-from-home charging opportunities that often occur during the 
daytime when solar generation is feasible. 

This report begins by summarizing previous research on PEV adoption and charging behavior 
that informed the PEV-CDM in Section 2. Section 3 then describes the inputs to and operation 
of the PEV-CDM, as well as inputs and formulation of the regional economic dispatch model. 
The results of these models are presented in Section 4. Finally, the key findings and future 
research directions, including the need for research to evaluate alternative management 
strategies to affect charging behavior and thus optimize the combined potential of 
transportation and grid emissions minimization are presented in the Conclusions section. 

2. Literature Review 

Grid impacts occur across a range of spatial and temporal scales, from impacts on local 
distribution infrastructure (Hilshey et al., 2013) to system costs and power plant dispatch 
decisions (Dowds et al., 2013), and the impacts are regionally and temporally variable (Miller et 
al., 2020). One key research question is the degree to which vehicle charging facilitates or 
impedes the effective emissions-reducing integration of large amounts of variable renewable 
energy (wind and solar) into the power grid. Early research on the grid impacts of vehicle 
electrification concluded that delayed, overnight vehicle charging, coinciding with periods of 
low existing electricity demand, offered significant benefits for electric grid management (Parks 
et al., 2007). However, the rapid deployment of solar generation has resulted in substantial 
changes in the net load throughout the day, resulting in idle generating capacity during daytime 
hours and increasing the rate at which fossil-fueled power plants need to ramp up through the 
late afternoon and evening. Over the long term, vehicle-grid integration (VGI), in which 
charging load can be scheduled or managed to reduce the cost of grid operations, or more 
advanced vehicle-to-grid (V2G) interactions which allow for bidirectional electricity flow, offer 
the potential to create significant synergies between PEVs and wind and solar generation (Lund 
and Kempton, 2008; Niesten and Alkemade, 2016).  

As discussed in Sovacool et al. (2017), however, in addition to technical challenges, consumer 
behavioral preferences also present significant challenges that must be addressed before VGI is 
widely adopted. In this context, it is important to understand the interactions between 
unmanaged vehicle charging and renewable energy generation. Modeling unmanaged charging 
requires detailed data on when and how far vehicles are traveling; where, when, and how long 
vehicles are stopped and able to charge; and their energy demand when they do charge. While 
there is a growing body of empirical charging data (Smart and Salisbury, 2015), the utility of 
these datasets for understanding future charging demand from a growing cohort of PEV owners 
is limited, since they are often derived from early adopters driving PEVs with relatively limited 
range in the context of more limited publicly available charging infrastructure (also referred to 
as electric vehicle supply equipment or EVSE). Consequently, modeled PEV charging demand 
profiles that can capture broader travel patterns and EVSE charging availability scenarios are 
needed to understand the interaction between PEV charging and high levels of wind and solar 
generation. 
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The magnitude and timing of PEV charging demand depend both on who adopts PEV 
technology and on the decisions that these PEV owners make about when to charge their 
vehicles. Since PEV adoption rates are unlikely to be uniform, and because adoption rates are 
likely to be correlated with travel behavior patterns – when, how far, and for what purpose 
vehicles are driven – understanding the predictors of PEV adoption is crucial for developing 
reasonable charging demand profiles. Travel behavior determines when and where vehicles are 
parked and potentially able to charge, as well as how much energy they require for charging. 
Each time a PEV is parked at a location with EVSE, the PEV operator faces a charging decision. In 
some cases, immediate future travel will necessitate charging the vehicle during a particular 
stop, but often the decision to charge or not will hinge solely on the operator’s discretion. Thus, 
understanding decision-making with regard to discretionary charging events is also essential to 
reasonably model the timing of PEV charging demand. Relevant literature on PEV adoption to 
date and the limited prior research on existing charging behavior are summarized below. 

2.1. PEV Adoption 

Given the current gap between PEV adoption and PEV adoption targets, it is highly likely that 
policy interventions will need to play a significant role in promoting PEV sales. Looking at PEV 
sales in Canada, Axsen and Wolinetz conclude that aggressive PEV mandates are achievable 
(Axsen and Wolinetz, 2018). Hardman et al. reviewed 35 different studies on the influence of 
purchase incentives on PEV adoption and found incentives generally effective, especially when 
applied at the time of purchase with value-added tax or purchase tax exemptions (Hardman et 
al., 2017). Prior research has generally shown interest in PEVs is positively correlated with 
income, education, full-time employment, multi-car households, and male gender, and 
negatively correlated with age. Many of the variables have also been shown to be correlated 
with travel behavior patterns and annual vehicle miles of travel (VMT) (Leard et al., 2019; 
Martin et al., 2016; McGuckin and Fucci, 2018). Awareness and higher density of publicly 
available EVSE is also associated with a higher interest in PEVs. An overview of these 
relationships is provided in Table 1 and several studies on PEV adoption are described 
individually below. More detailed summaries of demographic predictors of PEV adoption can 
additionally be found in Hardman et al. (2016), Javid and Nejat (2017), and Nazari et al. (2019). 



 4 

Table 1. Predictors of Interest in PEVs 

Variable Impact on interest in/adoption of PEVs Studies 

Age 
Age is inversely correlated with PEV interest 

(Carley et al., 2013; Hidrue et al., 2011; 
Lane et al., 2018)  

PEV interest highest in middle age (Axsen et al., 2016; Plötz et al., 2014) 

Education 
Education is positively correlated with PEV 
interest 

(Axsen et al., 2016; Carley et al., 2013; 
Helveston et al., 2015; Hidrue et al., 
2011; Javid and Nejat, 2017) 

EVSE 

Awareness/availability of publicly available 
EVSE is positively correlated with PEV interest 

(Javid and Nejat, 2017; Lane et al., 
2018; Narassimhan and Johnson, 2018; 
Sierzchula et al., 2014)  

EVSE increases interest in PHEVs but not BEVs (Nazari et al., 2019) 

Gender 
PEV interest is higher among men than 
women 

(Axsen et al., 2016; Carley et al., 2013; 
Helveston et al., 2015; Hidrue et al., 
2011; Plötz et al., 2014) 

Income PEV interest increases with household income 
(Axsen et al., 2016; Javid and Nejat, 
2017; Lee et al., 2019) 

Vehicle 
ownership 

Multi-vehicle ownership/high ratio of vehicles 
to drivers increases PEV interest  

(Carley et al., 2013; Nazari et al., 2019) 

Ownership of hybrid/alternative fuel vehicles 
is positively associated with PEV interest 

(Axsen et al., 2016; Lane et al., 2018) 

Two studies looked at vehicle purchase decisions in the 2012 California Household Travel 
Survey (CHTS) (Javid and Nejat, 2017; Nazari et al., 2019). These studies differ from many other 
studies related to PEV purchase decisions in that they use revealed preference data from 
historical vehicle purchases, rather than analysis of stated preference data. Just over 400 
households of PEV owners are included in this dataset (Javid and Nejat, 2017). Logistic 
regression by Javid and Nejat on the decision to purchase a PEV rather than ICEV found that the 
likelihood of PEV adoption increased with household income, the highest level of education in 
the household, per capita EVSE availability, and regional retail gasoline prices. Notably, the 
analysis found no significant relationship to gender and minimal impact of age, trip duration, 
and household size (Javid and Nejat, 2017). Nazari et al. conducted a nested logit modeling to 
further break down vehicle choice among battery electric vehicles (BEVs), plug-in hybrid electric  
vehicles (PHEVs) and hybrid electric vehicles (HEVs), and internal combustion engine vehicles 
(ICEVs) (Nazari et al., 2019). In addition to income and education, their analysis concluded that 
PEV adopters tend to live in close proximity to level-2 charging stations and tended not to live 
in apartments (Nazari et al., 2019). Somewhat counterintuitively, census tract EVSE density was 
positively correlated with PHEV adoption, but not with BEV adoption. These studies indicate 
that spatial analysis and location (as used here) will be important components of integrated 
transportation and electricity grid modeling. 
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A U.S. survey in 2008-2009 found that PEV orientation increased with education and interest in 
smaller vehicles and decreased with age, but did not find a relationship to income or number of 
household vehicles (Hidrue et al., 2011). A 2012 survey of adults in the United States found 
demographic variables, including gender (greater interest among males) and education (greater 
interest with higher education), correlated with interest in alternative fuel vehicles (Carley et 
al., 2013). A survey of 1,080 drivers in the United States in 2013 was designed specifically to 
distinguish between interest in two types of PEVs: PHEVs and BEVs (Lane et al., 2018). The 
authors concluded that interest in PHEVs appeared to be based on practical factors such as 
lower fuel costs, subsidies for PEVs, and specific vehicle design features, as these buyers were 
primarily selecting between PHEV and ICEV options. In contrast, interest in PEVs was more 
closely aligned with perceived environmental benefits and less on financial considerations. BEVs 
were less appealing to respondents who relied heavily on their vehicle, potentially reflecting 
range anxiety (Lane et al., 2018). Among early adopters in Germany, Plotz et al. found a higher 
affinity for PEVs among men, individuals in multi-person households, and full-time workers, and 
that PEV adopters were less likely to live in larger cities (Plötz et al., 2014). A Norwegian study 
also found that higher incomes and proximity to major cities were significantly related to BEV 
sales (Mersky et al., 2016). Hardman et al. (2016) defined low- and high-end EV adopters. High-
end adopters were willing to pay a higher BEV premium and included a higher proportion of 
female adopters than the low-end group. Additionally, high-end adopters were older, more 
educated, and had higher incomes, although both groups had higher incomes and car 
ownership rates than the population of the United States as a whole. 

Projecting future PEV adoption based on these past studies should be approached with some 
caution, as the characteristics that define early adopters of a technology will become less 
distinguishing as the technology becomes widespread. In an attempt to understand this 
transition, Axsen et al. surveyed consumers in British Columbia, Canada to study the differences 
between PEV “Pioneers”, Potential Early Mainstream buyers, and Potential Late Mainstream 
buyers (Axsen et al., 2016). Within the survey sample, respondents that already owned a PEV as 
of the 2015 study date were termed Pioneers while respondents who owned an ICEV but 
expressed an interest in PEVs were termed Potential Early Mainstream adopters. Respondents 
who did not express an interest in PEVs were termed Potential Late Mainstream adopters. The 
authors found that awareness of PEV technology was very low among both groups of potential 
mainstream adopters and that the Potential Early Mainstream respondents showed higher 
interest in PHEVs over BEVs, while the Pioneers showed a preference for BEVs (Axsen et al., 
2016). As in other studies, the Pioneers were more likely to have higher income and education, 
be middle-aged and male, and live in multi-vehicle households. In contrast, Potential Early and 
Late Mainstream adopters did not differ from one another in terms of age, income, education, 
or gender and more closely resembled the Canadian population as a whole. This supports the 
expectation that as PEV adoption becomes more widespread, PEV owners will more closely 
resemble the general population. 

Overall, the PEV adoption literature shows a relatively consistent set of socio-demographic 
factors that are linked to interest in PEVs. These factors are also correlated within the 
transportation planning literature with differences in travel behavior patterns, and therefore in 
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the amount of energy that is required for charging and the time of charging opportunities. 
While, as discussed by Axsen, the socio-demographic distinctiveness of PEV drivers is likely to 
diminish as PEVs become more common, it is an important consideration for near-term 
modeling efforts and the design of future charging systems. 

2.2. PEV Charging Behavior 

Decision making about PEV charging varies across individuals, reflecting differing travel 
patterns, variable access to EVSE, and differing levels of risk aversion about battery depletion. 
Early work using empirical vehicle data and user surveys indicates that the desire to charge 
increases as the battery state of charge (SOC) decreases and that many drivers (especially BEV 
drivers) do not wait until the SOC is low to begin charging. This research also shows that home 
and work charging account for the vast majority of charging events. It is important to 
remember that PEV battery capacity and publicly available EVSE locations have both increased 
significantly in recent years. Consequently, the charging decisions captured in these existing 
studies, made by drivers with shorter-range PEVs and fewer EVSE options, may not be fully 
reflective of current and future charging behavior.  

One of the largest empirical PEV charging datasets was collected and analyzed by the Idaho 
National Laboratory (INL) as part of the U.S. Department of Energy’s ChargePoint America and 
EV Project initiatives (Smart and Salisbury, 2015). These initiatives collected data from 8,000 
privately owned PEVs (Nissan Leaf BEVs and Chevrolet Volt PHEVs) from 2011 through 2013. All 
told, these vehicles drove 125 million miles and completed 6 million charging events. 
Participants were recruited to share their vehicle usage and charging data in exchange for the 
installation of Level-2 EVSE (240-volt) at their residences. Volt drivers frequently fully depleted 
their batteries before charging and averaged 1.5 charging events per day. Leaf drivers 
frequently recharged with significant remaining battery capacity and averaged 1.1 charging 
events per day. The home was the dominant charging location for both Leaf (84% of charging 
events) and Volt owners (87% of charging events), with most owners utilizing overnight, home 
charging on a near-daily basis. Drivers tended to utilize only a few away-from-home charging 
locations, with workplace charging the predominant source of non-home charging. Access to 
workplace charging increased the average annual eVMT for both Volt and Leaf drivers. Looking 
at data from public charging stations, the INL team found that highly utilized EVSE tended to be 
located at stop types with longer parking durations (including shopping malls, commuter lots, 
and downtown parking lots), suggesting that drivers may not find it worthwhile to plug in their 
vehicles for shorter stops.  

Several studies have found that driver charge decisions are sensitive to battery SOC and that 
drivers often charge at a relatively high SOC rather than waiting until the battery is mostly 
depleted. Results from the U.S. Department of Energy’s (DOE) EV Project showed that fewer 
than 12% of charging events started with a battery SOC below 30% (Smart and Schey, 2012). 
Franke and Krems (2013) used travel and charging diaries recorded by 79 BEV operators in 
Germany to assess how drivers appraised the relationship between their travel needs and 
remaining electric range to make charging decisions, which they termed the “user-battery 
interaction style”. Two-thirds of users started charging events with an average battery SOC 
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greater than 40%, compared to approximately 10% of users who started charging events with a 
SOC of less than 20%. Drivers charged an average of 3.1 times per week. Sun et al. (Sun et al., 
2015) used data collected from 234 private BEVs in Japan between 2011 and 2013 to explore 
the factors that influence the timing of charging at home after the last trip of the day. The 
authors used a multinomial discrete choice model to assess the likelihood that drivers would 
charge immediately upon returning home, charge overnight (defined as after 11:00 PM), charge 
during another time period or not charge at all. The model included battery SOC and numerous 
future travel variables. The likelihood of all types of charging events increased as SOC 
decreased and as the next day’s VMT increased. Latinopoulos et al. (2017) analyzed a small 
survey of BEV drivers in the UK and Ireland to explore the role of range anxiety on travel and 
charging decisions. They found that a subset of drivers chose to charge at a higher SOC to 
reduce the perceived risk of running out of battery, while others would only charge if the 
remaining SOC was inadequate for their next trip. A small survey of potential PEV owners found 
willingness to pay for charging increased as SOC diminished and as charging speeds increased 
(Latinopoulos et al., 2017). 

Charging behavior is, of course, influenced by EVSE availability, as the opportunity to charge is 
dependent on the presence of EVSE. Hardman et al. wrote a comprehensive review of 
consumer preferences and interactions with EV charging infrastructure in 2018 that found 
charging occurred primarily at four stop types: home, work, shopping centers/other public 
locations, and along long-distance travel corridors (Hardman et al., 2018). They report that 
home charging accounts for the majority (50-80%) of all charging events for PEVs, while the 
workplace is the next most frequent charging location. In general, the authors found BEV 
owners were more likely to utilize away-from-home charging opportunities than PHEV owners. 
Kim et al. (2016) utilized four years of transaction data from publicly available EVSE in the 
Netherlands to assess the frequency and regularity with which drivers utilized public charging 
stations. A latent class hazard model classified PEV users as either routine chargers, who 
exhibited consistent public EVSE usage patterns, or erratic chargers, who utilized public EVSE 
more randomly. Only 33% of PEV drivers exhibited routine usage of public EVSE. A large survey 
conducted in 2016-17 collected a seven-day charging history from 7,979 PEV owners in 
California that included information about charging locations (home, work, public), charging 
level (Level 1, Level 2, DC Fast), and charging cost (Lee et al., 2020). Respondents were classified 
based on their charging behavior (e.g., home-only chargers, home-and-work chargers, or work-
and-public chargers). More than half of the sample (53%) consisted of home-only chargers, 
while home-and-work chargers constituted 16% of the sample, and chargers who utilized home 
and public charging stations composed 13% of the sample. Notably, 14% of the sample did not 
charge at home in the previous seven days. The authors found that women and older PEV 
owners showed a lower likelihood to use away-from-home charging infrastructure, while 
residents of multi-unit dwellings were more likely to charge at non-home locations. Drivers of 
older BEVs were more likely to be in the home-work charging group, perhaps reflecting the 
shorter range of these vehicles. In contrast, owners of PEVs with a range above 200 miles were 
less likely to use non-home charging locations, suggesting that longer-range PEVs may lessen 
the need and demand for public EVSE. 
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Existing research demonstrates a clear link between SOC and charging decisions but also 
indicates that charging decision-making varies among individuals, with some individuals 
charging more aggressively than others. EVSE availability, PEV range, and individual psychology 
all influence charging behavior. While still growing, the literature on charging probability by 
location was adequate to inform the charging probability component of the model simulations 
in this paper. 

2.3. PEV Demand Simulation and Representation in Economic Dispatch 
Modeling 

Many early grid impact studies made significant simplifying assumptions about vehicle charging 
behavior, e.g., that all charging occurs at home in the evening or off-peak (Ahmadi et al., 2015; 
Calnan et al., 2013; Foley et al., 2013), that all vehicles charge upon arrival as long as a stop has 
charging infrastructure and a 10-minute dwell time constraint is met (Vithayasrichareon et al., 
2015), or that charging was limited to PHEVs (Andervazh and Javadi, 2017; Dowds et al., 2013; 
Vithayasrichareon et al., 2015). These initial studies are summarized in Gu et al. (2013) and 
Peng et al. (2012). 

More recently, several studies have explored simulating PEV charging profiles based on real-
world travel data, but their utilization in grid modeling has generally been limited to the study 
of optimized charging patterns. Summaries of the literature of PEV charging demand simulation 
based on household travel surveys are provided in Daina et al. (2017) and Pareschi et al. (2020). 
Pareschi et al. (2020) created simulated PEV charging profiles based on the Swiss Household 
Travel Survey. EVSE availability varies by stop type, and charging decisions are modeled 
stochastically as a function of SOC as is undertaken in this project. Parameterization of the 
charging behavior was calibrated against data from public PEV trials, including the U.S. DOE’s EV 
Project initiative mentioned previously. The simulated PEV profiles reproduced the empirical 
charging data with a high degree of accuracy but were limited to a single day of charging. Miller 
et al. (2020) suggest that PEV demand profiles should account for regional and hourly variations 
in weekend and weekday vehicle travel and ambient temperature (which impacts electric drive 
efficiency) over a full 365-day period that captures the impact of seasonality in order to 
accurately model operating emissions. They utilized historical charging data from the EV Project 
to create a distribution of the share of total charging that takes place in each hour of the day 
and determined total energy demand using travel data from the 2009 NHTS. The GHG 
emissions from charging were calculated using historical emissions data from 2018 and 2019 
and thus do not capture the interplay between charging demand and power plant dispatch 
decisions.  

Brady and O’Mahony created a stochastic simulation to generate PEV charging profiles based 
on GPS travel data collected during a BEV demonstration trial in Ireland (Brady and O’Mahony, 
2016). The Bayesian charging demand model considers departure time from home; the number 
of journeys per day; total distance traveled per day; initial SOC; parking durations; charging 
availability; and whether owners charge after each journey, conditioned on the battery SOC, 
parking time, and journey number. The authors note that these profiles would be useful in grid 
integration and charging optimization analyses. Because the travel patterns used in the model 
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were observed in low-range BEVs, it is unlikely that they capture the full range of travel that will 
be seen at higher PEV penetration levels. Hu et al. (2019) applied cumulative prospect theory, a 
behavioral science approach to describing decision-makers' level of risk aversion, to BEV 
charging behavior using NHTS travel data. None of the charging profiles described here are 
utilized for dispatch modeling or other grid impact analyses.   

The grid impact studies that consider PEV charging demand in the context of high levels of 
renewable energy penetration generally assume that PEV charging is optimized at the system 
level (Coignard et al., 2018; Taljegard et al., 2019; Wang et al., 2020). Since public policy is 
advancing both renewable energy and PEV penetration and the feasibility and public 
acceptance of managed charging is not a given (Sovacool et al., 2017), joint consideration of 
renewable and unmanaged charging using high-quality simulated PEV charging demand as well 
as typical grid dispatch modeling as pursued here is warranted. The overall objective is to assess 
the extent to which managed charging will be needed to maximize renewable utilization and 
minimize emissions from power generation. 

3. Methods and Data 

3.1. Plug-in Electric Vehicle Charging Demand Model 

The purpose of the PEV-CDM is to generate time-specific vehicle-charging profiles. The PEV-
CDM operates on retabulated household travel survey data to create potential charging 
demand profiles that are consistent with real-world vehicle-based trips. The model calculates 
charging demand using the same temporal resolution as the input survey data. For this paper, 
electricity demand calculated for each minute is aggregated into hourly time steps, since this is 
the temporal resolution of the regional economic dispatch model. The PEV-CDM is set up so 
that altering assumptions about PEV adoption, charging preferences, and EVSE availability is 
straightforward. Thus, the model can be modified to evaluate a wide range of research 
questions related to PEV penetration, EVSE availability, and charging incentives.   

As applied here, the PEV-CDM operates primarily on data from the 2016-2017 NHTS (Federal 
Highway Administration, 2017). Households that participated in the NHTS were asked to log all 
trips made by all household members on a single, assigned travel day. The dataset consists of 
four relational databases: a household table documenting attributes such as income and the 
number of vehicles owned; a person table documenting attributes of household members, 
including age, gender, and education; a vehicle table with vehicle class attributes and a primary 
driver designation; and a trip table documenting every trip that each person made on the travel 
day, including the travel mode and household vehicle used, when applicable. Data for the 
seven-state study region of New York and New England included 19,137 households and 34,479 
household vehicles. The trip database captured 84,192 unique vehicle trips. The distribution of 
purposes for these trips is shown in Table 2. Average trip lengths, trip durations, and 
corresponding stop durations for vehicles making at least one trip on the travel day are shown 
in Table 3. Note that the number of stops in the dataset exceeds the number of trips because 
the vast majority of vehicles are stopped before the first trip and after the last trip on the travel 
day (in rare instances, vehicles either begin or end the day traveling). While the NHTS data has 
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some limitations, most notably for this application that travel data are collected for only a 
single day, overall the data provide the most robust vehicle-travel dataset available for the 
study region. Use of the weights provided with the survey data for response bias are described 
below. 

Table 2. Distribution of NHTS Trip Purposes (Destination-based) 

Trip Purpose Number of Trips Share of Trips 

Home 28,705 34% 
Shopping  19,820 24% 
Work  11,595 14% 
Social/recreational 8,140 10% 
Passenger drop-off  5,440 7% 
Meals 5,304 6% 
School/religious  2,132 3% 
Medical  1,630 2% 
Other  1,426 2% 
Total 84,192 100%* 

* The sum of individual lines exceeds 100% due to independent 
rounding 

Table 3. NHTS Trip and Stop-length Summary Statistics 

  Average Standard Deviation Maximum 

Trip distances in miles (n = 84,192) 9.28 25.05 1,533 
Trip durations in minutes (n = 84,192) 20 27 990 
Stop durations in minutes (n = 105,395) 274 265 1,430 

Since travel patterns vary seasonally and between weekdays and weekends, the PEV-CDM 
subsets the NHTS data by season and by weekend versus weekday. Examination of the NHTS 
data also showed differences in the time of day that vehicles were utilized by vehicle type, with 
truck and van usage beginning earlier in the day, so the model also subsets the data by vehicle 
type to capture correlations between vehicle purchase and vehicle usage decisions. Table 4 
breaks out vehicles in the study region sample by vehicle type, weekday/weekend, and season. 
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Table 4. Size of NHTS Vehicle Sample by Season and Day of the Week 

Vehicle Type Day of Week 
Season 

Winter Spring Summer Fall 

Car/Station Wagon 
Weekday 3,438 2,508 3,300 3,463 

Weekend 1,358 1,009 1,348 1,279 

SUV/Pickup/Van 
Weekday 3,048 2,183 2,680 2,802 

Weekend 1,280   848 1,099 1,108 

Total  9,124 6,548 8,427 8,652 

The operation of the PEV-CDM, represented in Figure 1, involves four main steps: 1) creation of 
vehicle-based daily travel profiles; 2) calculation of PEV Compatibility Scores for each daily 
travel profile; 3) sampling of weekend and weekday daily travel profiles to create synthetic, 
week-long travel profiles; and 4) the application of the charging behavior logic to the week-long 
travel profiles to determine when vehicles charge and how much energy is utilized for each 
charging event. Because the NHTS data is limited to a single day of travel, in step 2 weekly 
profiles are constructed by sampling and appending five weekday and two weekend daily travel 
profiles within the same season and vehicle type. This process is replicated for each of the four 
seasons and, after the application of the charging logic, each season-week is then replicated 13 
times to create a full year of charging demand. The creation of seasonal profiles allows the 
modeling effort to capture seasonal variation in travel patterns and to reflect seasonal 
differences in wind and solar availability in the dispatch model.
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Figure 1. PEV-CDM Schematic 
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The creation of the vehicle-based daily travel profiles begins with the development of a vehicle 
trip log and corresponding stop log for each vehicle in the NHTS dataset. The trip log is 
constructed by eliminating the duplicate vehicle trip records that occur when multiple 
household members take a trip in the same vehicle at the same time and recording the start 
and end times, mileage, and purpose for all of the unique trips taken by each vehicle. A 
corresponding stop log is created for each vehicle, recording the start and end times and 
duration for all periods when the vehicle was not traveling as well as the purpose of the stop. 
Each stop is assigned a probability that charging infrastructure will be available at that stop, 
based on the purpose of the stop and the EVSE scenario. The EVSE availability probability is set 
to 1.0 by stop type for the first three scenarios: a) home stops, b) home-and-work stops, and all 
stops in universal EVSE scenarios, respectively. EVSE availability probabilities for the 
probabilistic scenario are shown in Table 5. Across all scenarios and stop types, 80% of charging 
is assumed to utilize Level-2 (7.2 kW) charging infrastructure. The remaining 20% of home 
charging events are assumed to utilize Level-1 (1.7 kW) chargers, while 20% of away-from-
home charging events are assigned a DC Fast Charger (50 kW). Once the trip and stop logs are 
generated, three derived variables – the mileage of the longest trip of the day, the total mileage 
for the day, and the total number of trips taken on the day – are calculated for each profile. 
These values, as well as attributes of the household and primary driver of the vehicle (gender, 
age, and educational attainment), are appended to the daily travel profile to use in the next 
step, the computation of the PEV Compatibility Scores. 

Table 5. EVSE Availability by Stop Type – Probabilistic EVSE Scenario 

Description Value 

Probabilities of EVSE availability based on 
stop/destination Type 

home = 0.95 
work = 0.75 

shopping = 0.5 
social/transport = 0.3  

meals = 0.4 
school/medical/other = 0.3 

 
Probability of EVSE availability based on trip 
location type of stop 

Rural = 0.5  
Suburban = 0.9  

Urban = 1.0 
 

After the vehicle-based daily travel profiles are created, each travel profile is assigned a set of 
PEV Compatibility Scores, indicating the relative compatibility of the profile with five different 
types of PEVs: a low-range BEV car, a high-range BEV car, a BEV truck/SUV, a PHEV car, and a 
PHEV truck/SUV. These scores are calculated based on household variables and socio-
demographic characteristics of the primary driver, as well as vehicle characteristics and travel 
patterns. The factors that contribute to the Compatibility Scores are based on prior literature 
and are shown in Table 6. These scores determine the relative frequency with which particular 
vehicle profiles are sampled in the simulation by the PEV-CDM. For example, a vehicle profile 
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from a single-vehicle household (multiplier of 0.8) with total VMT across all trips greater than 
the PEV range (multiplier of 0.5) would be sampled by the PEV-CDM only 40% as frequently 
(0.8*0.5) as a similar profile from a multi-vehicle household with total mileage within the PEV 
range. Some profiles are considered incompatible with specific PEV types (e.g., truck profiles 
are incompatible with PEV cars) and are never sampled for these PEVs. After the Compatibility 
Scores are calculated for each vehicle in the dataset, they are also multiplied by the NHTS 
expansion weights (developed by the NHTS program to accord for sample bias; New York and 
New England regional weights were used in this case). Application of the NHTS weights 
produces the final weights for sampling the profiles for each PEV type. 

Table 6. Compatibility Score Multipliers 

Variable Multiplier Notes 

Household location Urban: 1.0 
Rural: 0.8 

Rural areas are assumed to have a lower 
EVSE density and therefore lower PEV 
uptake 

Household Income Income/4 > PEV Price: 1 
Income/4 < Price: 1-
1000/diff 

The likelihood of PEV adoption increases 
with household income.  

Household Vehicle Count 2 or more vehicles: 1 
1 vehicle: 0.8 

Assumed values based on literature showing 
higher PEV adoption for multi-vehicle 
households (Axsen et al., 2016) 

Driver Age 1-0.0042*(age-16) Decreased likelihood of PEV ownership with 
age (Carley et al., 2013) 

Driver Education College degree: 1 
Some college: 0.95 
High school: 0.83 

Impact of education on PEV ownership 
(Carley et al., 2013) 

Vehicle Body Type Auto to truck: 0 
Truck to auto: 0 

Assumes consumer preferences for cars 
versus trucks/vans are stable in this 
application of the model 

Vehicle Fuel Type PEV/Hybrid: 1 
ICEV: 0.9 

Assumes lower probability of switching from 
an ICEV to a PEV than from a PEV or hybrid 
to PEV 

Longest Trip Length Trip length < PEV range: 1 
Trip length > PEV range: 0 

The profile is considered incompatible with 
a PEV type if the longest trip is greater than 
the PEV’s range 

Total Daily Trip Miles Total Miles < PEV range: 1 
Total miles > PEV range: 
0.5 

Profile compatibility is reduced if the total 
daily mileage exceeds the PEV’s range, 
reflecting range anxiety 

Minimum Battery SOC if 
charging at every 
opportunity 

SOC > 0.1: 1 
SOC < 0.1: 0.7 
SOC < 0: 0 

Profile compatibility is reduced if SOC falls 
below 10% (range anxiety) and incompatible 
if the SOC falls to 0. 
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The PEV characteristics for the Compatibility Score calculations and energy demand 
components of the PEV-CDM are summarized in Table 7. Vehicle characteristics (electric range 
and electric drive efficiency) are estimated based on the 75th percentile of the performance of 
currently available PEVs (model years 2015 and later) as reported by FuelEconomy.gov (U.S. 
Deparment of Energy, 2018). Vehicle price parameters are estimated from currently available 
models as reported in (McDonald, 2018).  

Table 7. Modeled PEV Attributes 

Attribute 
Low-Range 

BEV Car 
High-Range 

BEV Car 
Low-Range 
BEV Truck 

PHEV Car PHEV Truck 

Electric Range (mi) 110 310 290 30 20 

Drive efficiency (kWh/100 mi) 30 30 35 35 50 

Cost (thousands $) 25 50 50 25 50 

Fraction of modeled PEVs 0.28 0.26 0.14 0.27 0.05 

Once the daily vehicle-based travel profiles have been created and weekly profiles generated, 
the charging logic, summarized in Figure 2, is applied to the weekly profiles. Depending on the 
EVSE scenario, each stop is assigned a probability of having Level 1, Level 2, or DC Fast charging 
infrastructure available. Stops are categorized as non-charging stops, discretionary charging 
stops, or mandatory charging stops. Non-charging stops include stops without charging 
infrastructure, where dwell times are less than 10 minutes, or where the SOC is 100%. 
Mandatory charging stops are stops where charging infrastructure is available and must be 
utilized to complete all remaining travel on that day (or the next day if it is the last stop of the 
day). All other stops with charging infrastructure are discretionary, and the probability of 
charging at these stops is shown in Figure 2. 
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Figure 2. Charging Behavior Logic 
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For the initial application of the charging logic, the starting SOC is set to 100%. If the initial and 
final SOCs for the week do not match after this initial iteration, the charging logic is repeated 
using the final SOC from the previous iteration as the initial SOC in the next iteration. This 
process is repeated using the same vehicle profiles, decision variables, and EVSE levels used in 
the first iteration until the SOC at the end of any day matches the SOC on that day in the 
previous iteration. This method creates a continuous charging profile driven by the charging 
behavior logic and the empirical travel patterns from the NHTS. If the reiteration process does 
not converge after 16 iterations, it is aborted; this occurred approximately 2% of the time. In 
some instances, when the SOC at the start of a day is lower than 100%, a formerly feasible 
profile can become infeasible. In this case, a random vehicle profile is resampled to replace the 
infeasible profile. Less than 0.2% of weekly profiles required resampling. If resampling occurred 
within a reiteration loop, the entire weekly charging profile function was aborted and restarted 
with a new weekly profile. Figure 3 shows an example of a 1-week charging profile for a low-
range BEV, generated under the probabilistic EVSE scenario. The top plot shows the SOC 
throughout the week, with an initial and final SOC just over 0.7, while the bottom shows the 
hourly demand associated with all charging events. 

 

Figure 3. Example of Weekly Charging Profile for Low-range BEV 
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The structure of the PEV-CDM is highly flexible to modification. Changes to PEV costs and 
performance variables, predictors of PEV adoption, and charging behavior can easily be 
incorporated into the model. Likewise, alternative study regions and travel surveys can be used 
as the basis for the vehicle travel and stop profiles and sub-hourly time intervals can be 
modeled for other analytical applications.  

3.2. Economic Dispatch Model and Input Data 

The regional economic dispatch model optimizes the hourly power output for all modeled 
generating facilities to minimize the cost of meeting hourly electricity demand and expands on 
the model presented in Howerter (2019). The dispatch model operates on an hourly time step 
for one year. Model outputs include marginal generating costs, GHG and NOx emissions, and 
renewable energy utilization and curtailment. The application of the dispatch model 
incorporates extensive wind and solar generating capacity to assess the interaction between 
RPS and PEV charging demand. 

Baseline demand data used for the dispatch model were downloaded from the independent 
system operators for New York (NYISO) and New England (ISO-NE) for 2016 (New York 
Independent System Operator, 2018; ISO New England, 2019). ISO-NE provides jurisdiction-
wide, hourly load data. Load data from NYISO are reported zonally in 5-minute increments. The 
data from NYISO were averaged for each hour and summed across all zones to produce hourly 
statewide demand for New York. An 8% growth rate was applied to the hourly demand from 
2016 to project demand for 2030 (EIA, 2019). 

Generating capacity and performance data (heat rates, emissions rates, and fuel types) for 
existing generators in the region came from the EPA’s 2016 Emissions and Generation Resource 
Integrated Database (eGRID) (US EPA, 2015). Hydro, wind, and solar generating facilities were 
aggregated at the state level, while all other plants are represented individually. Thermal plants 
missing emissions rates were assigned the average emissions rate for plants of the same fuel 
type and were excluded from the model if there were no plants of that type with valid data. The 
final dataset also excluded combustion plants with a nameplate generating capacity below 25 
MW (which are not covered by the Regional Greenhouse Gas Initiative [RGGI], a GHG cap-and-
trade system operating in the northeast United States), as well as plants missing primary fuel 
type or nameplate capacity. Electricity imports and exports were not considered in this 
iteration of the model.  

Currently, 29 states and the District of Columbia have some form of renewable portfolio 
standard (RPS) requiring electricity suppliers to increase renewable energy generation. States 
have generally succeeded in meeting their RPS targets and approximately half of the growth in 
renewable generation since 2000 is related to state requirements (Barbose, 2018). In the 
northeast United States, 2030 RPS targets range from 25% to 70% of total generation (“State 
Renewable Portfolio Standards and Goals,” n.d.). The authors created a 2030 RPS-compliant 
generating portfolio by adding sufficient additional wind and solar to meet all individual states 
RPS targets. Renewable generation capital costs were not considered in the optimization, under 
the assumption that the states would require compliance with their RPS standards. The 
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additional nameplate wind and solar capacity required to meet the RPS targets were calculated 
by assuming equal generation from solar and on-shore wind and average capacity factors for 
the resources from 2013-2016 calculated by using the data and methodology described in 
James et al. (2017). Solar, wind, and hydro have $ 0/MWh marginal cost in this model and are 
thus always dispatched first up to their hourly maximum capacity or until further utilization of 
these resources in a particular hour would require an infeasible change in thermal generation 
between one hour and the next. Table 8 shows the installed capacity by fuel type of the 
modeled plants included in the 2016 eGrid data as well as the expanded capacity required to 
meet the 2030 RPS targets. 

Table 8. RPS-Compliant Generating Capacity 

Fuel Type 
Average 

Marginal Cost 
($/MWh) 

Average GHG 
Rate (metric 
ton/MWh) 

2016 eGrid Plants 2030 RPS Compliant Portfolio 

Total MW 
% of Total 
Capacity 

Total MW 
% of Total 
Capacity 

Gas $ 54.23 0.49 43,903 47 43,903 28 

Solar $ 0.00 0.00 903 1 43,900 28 

Wind $ 0.00 0.00 4,646 5 26,300 17 

Oil $ 328.53 1.15 16,379 18 16,379 10 

Nuclear $ 7.10 0.00 9,783 11 9,783 6 

Hydro $ 0.00 0.00 9,510 10 9,510 6 

Coal $ 22.95 0.97 5,834 6 5,834 4 

Biomass $ 15.46 0.32 2,093 2 2,093 1 

Total   93,053 100 157,704 100 

Figure 4 shows the hourly availability of wind and solar power averaged over the full year and 
for two individual days, March 1 and August 1. In these examples, average wind availability is 
quite stable over the course of the day, with a slight dip during daylight hours. Average solar 
availability is highly concentrated during mid-day hours, with a rapid increase between 6 AM 
and noon and then a rapid decrease until 6 PM. This rapid drop in available solar power drives 
the concern about the duck curve effect, a phenomenon in which net load (demand less the 
power generated by intermittent renewable) dips sharply in the middle of the day, requiring 
rapid, technically and economically inefficient changes in baseload generation and/or 
significant renewable curtailment (Coignard et al., 2018). Of course, the nature of these 
generating sources is such that there is considerable variation in their daily availability, as is 
illustrated here.   
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Figure 4. Availability of Wind and Solar Generating Capacity 

The dispatch model is a linear optimization model that minimizes the system cost of generating 
electricity, given a set of power generation facilities, fuel costs, hourly demand, and emissions 
constraints. It operates on an hourly time-step for one year. The model is written in Julia using 
JuMP (Dunning et al., 2017), a domain-specific open-source modeling language for 
mathematical optimization, and the Gurobi solver (Gurobi Optimization, LLC, n.d.). 

The formulation of the dispatch model is given in Equations 1 to 6. The decision variable is the 
power generation from every generator, Pg, in each hour of the year. Equation 1 is the objective 
function, where cg is the fuel cost for generator g and Pg(t) is the power generated by that 
generator in hour t, the product of which is summed annually for all generators, Ng. Fuel costs 
are equal to the product of the fuel price and each plant’s heat rate and are set to zero for 
wind, solar, and hydro facilities. The power balance constraint in Equation 2 requires that total 
generation in each hour equals the demand in that hour, Pd(t), for all hours of the year, 𝑡 ∈ 𝑇. 
Equation 3 limits the maximum generation of each plant to the product of its maximum 
installed capacity, Pmax

g, and an hourly capacity factor, CFg(t), that varies hourly for wind and 
solar plants and equals 1 for all other plants. Equation 4 limits the maximum change in power 
generation in consecutive hours, Pg (t)-Pg (t-1), for ramping constrained power plants, 
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g∈{Ramp}. Ramping constraints were applied to biomass, coal, and nuclear facilities using the 
ramp rates reported in Deloitte (2019). Equation 5 constrains the GHG emissions at levels set by 
RGGI, Gmax. GHG emissions are equal to the product of each plant’s GHG emissions rate, rGHG, 
and power generation, summed for all generators and all hours. Similarly, Equation 6 constrains 
the NOx emissions of New York power generators for May to September (t ∈ {2880, 6552}), at 
levels set by the EPA, where 𝑟𝑔

𝑁𝑂𝑥 is the NOx emissions rate. Transmission constraints are 

omitted from this model.  

minimize ∑ ∑ 𝑐𝑔𝑃𝑔(𝑡)
𝑁𝑔

𝑔=1
𝑇
𝑡=1   ∀𝑡 ∈ 𝑇 1 

s.t. ∑ 𝑃𝑔(𝑡)
𝑁𝑔

𝑔=1 =  𝑃𝑑(𝑡)  ∀𝑡 ∈ 𝑇 2 

 𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔(𝑡) ≤  𝑃𝑔

𝑚𝑎𝑥 ∗ 𝐶𝐹𝑔(𝑡) ∀𝑡 ∈ 𝑇 3 

 |𝑃𝑔(𝑡) − 𝑃𝑔(𝑡 − 1)| ≤  𝐷𝑔
𝑚𝑎𝑥  ∀𝑔 ∈ {𝑅𝑎𝑚𝑝} 4 

 ∑ ∑ 𝑃𝑔(𝑡)
𝑁𝑔

𝑔=1
𝑇
𝑡=1 ∗ 𝑟𝑔

𝐺𝐻𝐺 ≤  𝐺𝐻𝐺𝑚𝑎𝑥   5 

 ∑ ∑ 𝑃𝑔(𝑡)𝑔∈ 𝑁𝑌
𝑡=6552
𝑡=2880 ∗ 𝑟𝑔

𝑁𝑂𝑥 ≤  𝑁𝑂𝑥
𝑚𝑎𝑥   6 

Model outputs include the hourly generation and emissions for each power plant in the model. 
In addition, the marginal cost of generation is the dual variable of the power balance constraint 
shown in Equation 2, while the GHG cost is the dual variable of the emissions constraint in 
Equation 5 of the optimization formulation. 

4. Results and Discussion 

4.1. PEV-CDM: Vehicle Charging Demand 

For each modeled scenario, the PEV-CDM outputs aggregate hourly charging demand, charging 
demand by stop type, and total PEV electric VMT. Here we consider several aspects of these 
results that have implications for grid operations: charging demand as a share of baseline 
demand, seasonal and daily patterns in the timing of charging demand, the degree of alignment 
between charging demand and wind and solar availability, and the extent to which charging 
demand impacts interhour variability in total demand. In addition, we look at the relationship 
between stop type and charging demand under the universal EVSE scenario. 

Seasonal and annual energy demand resulting from PEV charging is summarized in Table 9. 
Total energy consumption for PEV charging is dependent on the EVSE scenario, since more 
widespread charging infrastructure means that higher-mileage daily travel profiles are 
compatible with PEV range and charging characteristics. For 15% PEV penetration, charging 
increases annual electricity demand by between 1.9% and 2.2% of baseline demand (home-only 
and universal EVSE scenarios, respectively). At the seasonal level, total charging demand for all 
EVSE scenarios is highest in the summer and fall and lowest in the spring and winter, reflecting 
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underlying variability in travel patterns. Although absolute demand is highest in the summer, 
total and hourly average PEV charging demand, as a share of baseline electricity demand, is 
highest in the fall for all EVSE scenarios. This shows that both travel and electricity consumption 
increase in the summer, but that there is a decrease in baseline electricity consumption in the 
fall while travel is still high. Looking at peak PEV charging demand, the peak hour of demand for 
the PEV occurs in the home scenario in the fall. In all seasons, the peak hour of PEV demand 
under the home charging scenario was higher than that of both the work and probabilistic 
scenarios, even though the total annual and average hourly demand are lower. This implies that 
even with unmanaged charging, the addition of public infrastructure helps to reduce peak 
demand to a certain extent as charging is more evenly spread out throughout the day.
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Table 9. PEV Charging Demand by Scenario 

 
 

5% PEV penetration 15% PEV penetration 

 home work prob univ home work prob univ 

Total Demand (GWh 
and % of baseline) 

Annual 2,001 
0.65% 

2,119 
0.69% 

2,119 
0.69% 

2,258 
0.73% 

6,001 
1.94% 

6,352 
2.05% 

6,357 
2.06% 

6,775 
2.19% 

Winter 464  
0.60% 

493  
0.63% 

493  
0.63% 

524  
0.67% 

1,390 
1.79% 

1,480 
1.90% 

1,479 
1.90% 

1,573 
2.02% 

Spring 441  
0.63% 

465  
0.67% 

463  
0.66% 

490  
0.70% 

1,323 
1.89% 

1,394 
2.00% 

1,392 
1.99% 

1,469 
2.10% 

Summer 553  
0.62% 

580  
0.65% 

584  
0.65% 

622  
0.70% 

1,656 
1.85% 

1,738 
1.95% 

1,751 
1.96% 

1,867 
2.09% 

Fall 544  
0.75% 

580  
0.80% 

579  
0.80% 

622  
0.86% 

1,631 
2.26% 

1,740 
2.41% 

1,736 
2.40% 

1,866 
2.58% 

Average  
Hourly Demand 
(MWh and % of 
baseline) 

Winter 212  
0.57% 

226  
0.60% 

226  
0.60% 

240  
0.63% 

636  
1.70% 

678  
1.81% 

677  
1.80% 

720  
1.91% 

Spring 200  
0.61% 

211  
0.64% 

210  
0.64% 

222  
0.67% 

599  
1.84% 

632  
1.92% 

630  
1.91% 

665  
2.00% 

Summer 250  
0.61% 

263  
0.63% 

264  
0.64% 

282  
0.67% 

750  
1.83% 

787  
1.90% 

793  
1.91% 

845  
2.01% 

Fall 249 
0.74% 

266  
0.78% 

265  
0.78% 

285  
0.83% 

747  
2.22% 

797  
2.34% 

795  
2.33% 

855  
2.48% 

Maximum Hourly 
Demand (MWh and % of 
baseline) 

Winter 736  
1.93% 

624  
1.64% 

699  
1.83% 

738  
1.94% 

2,201 
5.78% 

1,873 
4.91% 

2,094 
5.48% 

2,220 
5.80% 

Spring 561  
1.73% 

495  
1.54% 

531  
1.63% 

559  
1.72% 

1,679 
5.17% 

1,481 
4.63% 

1,593 
4.88% 

1,670 
5.13% 

Summer 625  
1.78% 

588  
1.68% 

609  
1.74% 

781  
2.23% 

1,882 
5.33% 

1,750 
5.00% 

1,819 
5.19% 

2,339 
6.68% 

Fall 848  
2.63% 

693  
2.16% 

779  
2.44% 

818  
2.55% 

2,533 
7.91% 

2,083 
6.49% 

2,346 
7.31% 

2,455 
7.61% 
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The impact of PEV charging on the overall demand curve for the average day is shown in Figure 
5. Unmanaged PEV charging increases demand for all hours of the day, with the greatest 
increase during the late afternoon and evening. Without time-of-day charging incentives or 
other managed charging regimes, charging demand contributes relatively little to overall 
demand in the overnight and early morning hours, when the baseline demand is lowest. 

 

Figure 5. Average Hourly Demand – Baseline and 15% PEV Scenarios 

Figure 6 shows the aggregate PEV demand for Friday and Saturday of each season to illustrate 
both the seasonal and daily variability in the timing of PEV charging demand. Weekday charging 
demand is bimodally distributed, peaking in the morning hours as PEV drivers arrive at work 
and in the evening as they return home. Weekend charging demand, in contrast, peaks in 
midday as trip making is less constrained by work and school travel. Similarly, reflecting the 
constraints of work and school travel, total weekday charging demand is relatively consistent 
across the seasons, but weekend travel shows considerable variation by season, with highest 
demand in summer, followed by fall. 
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Figure 6. Differences in the Distribution of Weekday vs Weekend Demand (15% PEV 
penetration, universal EVSE availability) 

To illustrate the degree of temporal alignment between charging demand and renewable 
generation, Figure 7 compares the share of daily PEV demand to the share of combined wind 
and solar availability for each hour of the average day. PEV demand for the probabilistic EVSE 
scenario has been omitted from this figure to improve visual clarity; if included, it would fall 
between the home-only and universal EVSE scenarios for all hours of the day. Since combined 
wind and solar availability on average is highest at midday (as illustrated in Figure 4 and shown 
in grey here), charging demand during this period can be beneficial for ensuring these energy 
sources are fully utilized. Consistent with expectations, expanding the availability of away-from-
home charging opportunities in both the work and universal EVSE scenarios increases daytime 
charging, coinciding with solar energy availability. Daytime charging demand is highest with 
universal EVSE availability and lowest in the home-only scenario. Given the charging 
assumptions utilized in PEV-CDM, PEV demand in all scenarios increases through the late 
afternoon and evening as combined wind and solar availability fall, exacerbating the duck curve 
effect.  
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Figure 7. Impact of EVSE Availability on the Temporal Correspondence between PEV Demand 
and Combined Wind/Solar Availability 

Another important aspect of charging demand on grid operations is the extent to which 
charging increases or decreases the hourly variability in electricity demand. Larger and more 
rapid changes in demand require more active load following (tracking) by generating facilities 
and can increase operating costs and complexity. Table 10 summarizes the hourly changes in 
electricity demand for the baseline demand scenario and the 15% PEV penetration for each of 
the four EVSE availability scenarios. These results show that interhour variability in electricity 
demand increases with EVSE availability. The universal EVSE availability scenario has the highest 
average change and the largest standard deviation in hourly electricity demand. While PEV 
charging demand increases interhourly changes in demand, the magnitude of this increase is 
modest relative to the existing baseline variability at the 15% penetration level. As noted in 
Smart and Salisbury (2015), simple time-of-day pricing, which incentivizes PEV users to begin 
charging at a specific hour, is likely to result in more dramatic swings in hourly demand than 
charging behavior governed by trip stop timing as modeled in the PEV-CDM. 
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Table 10. Interhour Changes in Electricity Demand 

Change in Hourly Demand 
(MWh) 

Baseline 
EVSE Scenario - 15% PEV Penetration 

Home 
Only 

Work Probabilistic Universal 

Median 841.8  946.0  964.5  961.7  980.0  
Mean 1,100.5  1,204.4  1,219.4  1,216.9  1,237.4  
Maximum 4,272.4  4,481.2  4,433.2  4,486.4  4,545.8  
Stand Deviation 925.3  975.9  981.6  985.5  1,001.6  
10th Percentile 129.9  148.3  158.9  149.9  144.8  
90th Percentile  2,586.3  2,746.8  2,783.5  2,779.4  2,821.8  

Finally, the PEV-CDM also summarizes charging demand by stop purpose. The universal EVSE 
scenario provides insight into the potential charging demand that could be met at different stop 
types and can inform EVSE siting priorities. Consistent with existing empirical research, home 
charging accounts for the largest share of PEV charging demand in the universal EVSE scenario 
(55.6%), while work charging accounts for the second-largest share of charging demand 
(17.3%). This reflects a combination of the frequency of trips to home and work (see Table 2) as 
well as the relatively long duration of stops at these locations. Figure 8 compares the frequency 
of away-from-home stops with the share of PEV charging demand that occurs at each stop type. 
Following work stops, social/recreational and then shopping stops represent the largest shares 
of non-home charging demand. Notably, the social/recreational stops accounted for a higher 
share of non-home charging demand than their share of stops, which may indicate that the 
trips are likely to occur later in the day’s trips sequence (e.g., after work or school), resulting in 
a comparatively low SOC at these stops. These results support incentives for workplace 
charging infrastructure development since nearly 40% of all non-home charging occurred at 
work stops and the work EVSE scenario shifted a significant fraction of PEV charging demand 
into daylight hours. 
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Figure 8. Away-from-home Charging Demand by Stop Type and Stop Frequency with 
Universal EVSE Availability 

Consistent with prior research, the PEV-CDM results suggest that total PEV charging demand at 
15% PEV penetration is unlikely to tax aggregate existing generating capacity. Instead, grid 
impacts are more likely to result from the timing of PEV charging relative to peak demand and 
relative to wind and solar availability. The quantification of hourly charging demand, consistent 
with real-world travel behavior, allows for the integration of travel behavior with economic 
dispatch modeling and other grid modeling tools.  

4.2. Power Generation and Associated Emissions Results 

The regional economic dispatch model was run for nine PEV scenarios, with hourly electricity 
demand for PEV charging varying between runs. Since the RPS-compliant generating portfolio 
for 2030 used in the application of the model includes a 10-fold increase in installed wind and 
solar capacity, the GHG emissions constraint (Equation 5) was not binding in any of the model 
runs. Comparing dispatch model run results across scenarios shows the impact of PEV charging 
and EVSE availability on afternoon ramping of thermal generators (the duck curve effect), the 
net change in GHG emissions across the transportation and electric power sectors, changes in 
total generation by fuel type, as well as the impact of charging demand on the utilization of 
wind and solar resources. Since the impacts of the 5% and 15% PEV penetration levels differ in 
magnitude but are otherwise broadly similar, the text and figures in the section focus on the 
15% PEV model runs.  

As discussed previously, substantial solar generating capacity, like that assumed for the RPS-
compliant generating portfolio, can drive down the utilization of thermal generators during 
midday hours, requiring these generators to rapidly increase their power output in the later 
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afternoon and evening hours as solar availability wains. Figure 9 shows the average hourly load 
faced by thermal generators during the summer months, exhibiting the characteristic “duck 
curve” shape in the baseline model run and for all EVSE scenarios. The addition of PEV charging 
demand does modestly increase the minimum demand facing the thermal generating facilities, 
especially with universal EVSE availability, but also increases the evening peak, exacerbating the 
overall rate at which thermal generation increases through the late afternoon and evening. 
While this level of ramping is feasible within the constraints included in the dispatch model, the 
model omits constraints on minimum operating time and start-up costs. Consequently, actual 
grid operation would likely require additional steps to mitigate the magnitude of thermal 
ramping, such as the increased curtailment of solar generation, the development of significant 
electricity storage capacity, or the implementation of managed PEV charging regimes. 

 

Figure 9. Average Demand for Thermal Generation June 1 - August 31 

A summary of the net change in GHG emissions for each model run is shown in Table 11. The 
baseline model run, with no additional PEVs, has the lowest total generation and GHG 
emissions from generation because it has the lowest electricity demand. The GHG emissions 
from ICEVs for the baseline scenario were calculated by multiplying the annual total mileage for 
non-PEV passenger vehicles reported in the NHTS sample by an assumed emissions rate of 404 
gram/mile, the equivalent of 22 miles per gallon. For each PEV scenario, the ICEV mileage is 
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reduced by the electric VMT calculated by the PEV-CDM. In general, as PEV penetration and 
EVSE availability increase, generation and direct GHG emissions from power generation also 
increase. However, net GHG emissions decrease as PEV penetration and EVSE availability 
increase since the GHG emissions from in-vehicle gasoline consumption fall more quickly than 
the GHG emissions from power generation increase. Despite higher demand in the workplace 
and probabilistic EVSE scenarios, direct GHG emissions from power generation are lower in 
these scenarios than the home-only EVSE scenario, as more PEV demand in the home-only 
scenario is concentrated during the afternoon/evening demand peak, forcing more expensive 
and higher emitting generators to be dispatched. Overall, the shift towards PEVs and expansion 
of EVSE availability is effective at reducing net GHG emissions and has minimal impact on 
average generating costs.
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Table 11. Generating Costs and System-wide GHG Emissions 

Additional 
PEV 

Penetration 
EVSE Scenario 

GHG Emissions (Metric Tons) 
Percent 

Reduction 
Total Gen. 
Cost (MM) 

Total 
Generation 

(GWh) 
Electricity 

Generation 
ICEV VMT Total Reduction 

0% N/A 25,734,435 85,191,910 110,926,345 N/A N/A 1,537.97 308,480 

5% 

Home 26,551,657 82,707,464 109,259,121 1,667,224 1.5% 1,580.05 310,476 

Work 26,534,378 82,576,689 109,111,067 1,815,278 1.6% 1,579.03 310,592 

Probabilistic 26,541,911 82,576,851 109,118,762 1,807,583 1.6% 1,579.65 310,593 

Universal 26,552,377 82,418,623 108,971,000 1,955,346 1.8% 1,580.42 310,732 

15% 

Home 28,193,632 77,743,286 105,936,918 4,989,427 4.5% 1,666.01 314,464 

Work 28,160,012 77,350,988 105,511,000 5,415,345 4.9% 1,663.06 314,814 

Probabilistic 28,173,770 77,346,823 105,520,593 5,405,752 4.9% 1,664.98 314,819 

Universal 28,204,236 76,871,248 105,075,484 5,850,861 5.3% 1,667.56 315,236 
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The 15% PEV penetration scenarios increased generation by all generating types relative to the 
baseline scenario, but the generator types utilized most varies by EVSE scenario. Figure 10 
shows the additional hourly generation by fuel type for the average day relative to the baseline 
model run, while Figure 11 shows the average change in generation for the work and universal 
EVSE scenarios relative to the home-only scenario. As discussed in relation to Figure 7, 
additional demand for PEV charging is highest in the evening hours in all EVSE scenarios, but 
the availability of away-from-home charging in the workplace, probabilistic, and universal 
scenarios results in a higher proportion of charging demand being met during daytime hours. 
The majority of the additional demand for electricity from 5:00 PM through the nighttime hours 
is met by expanded natural gas generation. Increased coal generation is the second largest 
contributor to meeting PEV demand during this period. Consequently, the shift towards away-
from-home charging during the daytime hours is effective at reducing both gas and coal 
generation in favor of higher utilization of renewable and nuclear-generating facilities. 

 

Figure 10. Differences in generation between baseline and 15% PEV penetration scenarios 
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Figure 11. Differences in Generation Relative to Home-only EVSE Scenario (15% PEVs) 

The change in the utilization of renewable resources is quantified in Table 12. PEV charging 
demand resulted in the decreased curtailment of renewable generation in all EVSE scenarios. 
The greatest reduction in renewable curtailment is achieved with universal EVSE availability, as 
would be expected. These model results demonstrate that higher PEV penetration levels or 
managed charging could further reduce the curtailment of these renewable resources. The 
generating capacity in the model substantially exceeds the level needed to meet PEV demand 
and thus, in the absences of plant retirements, could meet the energy needs of significantly 
higher PEV penetrations.  

Table 12. Renewable Curtailment by EVSE Scenario 

Curtailment 
PEV Scenario 

0% 15% Home 15% Work 15% Prob 15% Univ 

Hours with Curtailment 3,236 3,174 3,152 3,154 3,134 

Average Hourly Curtailment (MWh) 2,813 2,716 2,662 2,664 2,621 

Maximum Hourly Curtailment (MWh) 29,194 28,968 28,735 28,740 28,563 

Total Annual Curtailment (GWh) 9,104 8,622 8,391 8,403 8,214 
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Conclusions 

High market penetration of PEVs and renewable power generation are major technological 
strategies for GHG emissions reductions across the transportation and electric power sectors. 
PEV charging and renewable energy availability (especially for wind and solar) have important 
and unavoidable temporal constraints and the alignment between charging times and 
renewable power availability has critical emissions and important cost implications. The 
modeling efforts described here provide a valuable approach for understanding the interactions 
between these two strategies, while exploring a range of assumptions about EVSE availability, 
charging preferences, and power-generating options using real-world travel data to create 
realistic charging demand opportunities, including by location type.  

Driving times as well as EVSE availability are unavoidable determinants of the timing of vehicle 
charging. Given the charging logic implemented in the PEV-CDM, when charging infrastructure 
was available at more stop locations, a larger portion of charging demand was shifted off-peak 
and into the morning hours relative to home-only charging scenarios. This was true even 
without incentives or managed pricing schemes. Unique to this model was the sensitivity of the 
results to widespread EVSE availability also leading to higher overall charging demand, since 
higher-mileage vehicle profiles were compatible with PEV performance in these 15% scenarios. 
The results also provide evidence of the particular importance of workplace charging. Even in 
the scenario with universally available charging infrastructure, 39% of all non-home charging 
demand occurred at workplaces, and work stops had the highest percentage of non-home 
charging events. All EVSE scenarios result in increased peak demand and increased generation 
by non-renewable generating sources. This indicates that pricing or other incentive mechanisms 
that influence charging decisions could result in lower cost, lower emissions outcomes. 

Several additional refinements and applications of both the PEV-CDM and regional economic 
dispatch model will be the focus of future work. For the PEV-CDM, these include sensitivity 
analysis surrounding the probability of charging at discretionary charging locations, as well as 
the impact of time-of-use pricing and other incentive structures. Both require improved data on 
driver decision-making, including parameters around charging choices of non-early adopters. 
The current probabilities reflect relatively conservative charging behavior that may result in 
drivers maintaining a higher SOC by charging more frequently than may be realistic as PEV 
ranges increase. In addition, as the PEV market rapidly changes, the PEV range attributes that 
influenced which vehicle travel profiles were included in the PEV-CDM may become dated; 
future scenarios could consider different range and efficiency characteristics.  

It is crucial that PEV charging demand profiles be based on real-world travel data. As PEV range 
performance increases substantially beyond the distances traveled by most vehicles in a single 
day, the traditional one-day travel survey becomes a major limitation in combined 
transportation and energy sector models. Travel survey data collected over a multiday or 
multiweek timeframe, potentially using passive methods with mobile devices, would capture 
the behavior of individuals across multiple days. Moreover, those who routinely travel long 
distances as well as less frequent long-distance intercity travelers may require the utilization of 
DC Fast Charging Corridors; modeling these behaviors would require more extensive travel data 



 35 

than is currently collected. Improvements to the regional dispatch model should include the 
consideration of alternative capacity expansion options and optimization of energy storage 
capacity, including the potential use of PEVs for storage.   
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Data Summary  

Products of Research  

This study used publicly available data from the 2017 National Household Travel Survey, the 
New York Independent System Operator load data, the Independent System Operator New 
England load data, and the Emissions & Generation Resource Integrated Database.  

The National Household Travel Survey data can be downloaded from the Oak Ridge National 
Laboratory here: https://nhts.ornl.gov/. The following citation is recommended for users of the 
data: U.S. Department of Transportation, Federal Highway Administration, 2017 National 
Household Travel Survey. URL: http://nhts.ornl.gov. 

The New York Independent System Operator data can be downloaded here: 
https://www.nyiso.com/custom-reports?report+rt_actual_load. The following citation is 
recommended for users of the data: New York Independent System Operator, 2018. Energy 
market and operation data: Custom reports. URL https://www.nyiso.com/custom-
reports?report+rt_actual_load.  

The Independent System Operator New England load data can be downloaded here: 
https://www.iso-ne.com/isoexpress/web/reports/load-and-demand. The following citation is 
recommended for users of the data: ISO New England, 2019. Energy, load and demand reports: 
Demand. URL https://www.iso-ne.com/isoexpress/web/reports/load-and-demand.  

The Emissions & Generation Resource Integrated Database data can be downloaded from the 
Environmental Protection Agency here: https://www.epa.gov/egrid. The following citation is 
recommended for users of the data: US EPA, 2015. Emissions & Generation Resource Integrated 
Database (eGRID). US EPA. URL https://www.epa.gov/energy/emissions-generation-resource-
integrated-database-egrid.  

Data Format and Content, Data Access and Sharing, and Reuse and 
Redistribution 

The data can be downloaded in a variety of formats from the sources noted above.  

https://nhts.ornl.gov/
http://nhts.ornl.gov/
https://www.nyiso.com/custom-reports?report+rt_actual_load
https://www.nyiso.com/custom-reports?report+rt_actual_load
https://www.nyiso.com/custom-reports?report+rt_actual_load
https://www.iso-ne.com/isoexpress/web/reports/load-and-demand
https://www.iso-ne.com/isoexpress/web/reports/load-and-demand
https://www.epa.gov/egrid
https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid
https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid
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